An optical viewing system produces a simulated three dimensional image (122) having one or more foreground layers on a substantially transparent field, and one or more background features projected to appear behind the foreground layer(s). The device can utilize two video monitors (12, 14) or one monitor (100) wherein the foreground and background are presented in distinct adjacent areas (112, 114). A full silvered mirror (118) can reflect the background to the observer (130) through a half silvered mirror (116) which transmits the background and reflects the foreground, the foreground appearing to the observer (130) as closer than the background. A display surface (110) can be oriented horizontally and the foreground and background layers projected in horizontally divided areas (126, 128) of the display surface.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>BA</td>
<td>Barbados</td>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>BB</td>
<td>Barbados</td>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>BL</td>
<td>Benin</td>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>CD</td>
<td>Central African Republic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>CL</td>
<td>Côte d'Ivoire</td>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>CZ</td>
<td>Czech Republic</td>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>ES</td>
<td>Spain</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>GA</td>
<td>Gabon</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
<td>GR</td>
<td>Greece</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
<td>IT</td>
<td>Italy</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LI</td>
<td>Liechtenstein</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
<td>MG</td>
<td>Madagascar</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
<td>MR</td>
<td>Mauritania</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SK</td>
<td>Slovak Republic</td>
<td>SN</td>
<td>Senegal</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
<td>VN</td>
<td>Viet Nam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THREE DIMENSIONAL OPTICAL VIEWING SYSTEM

Background of the Invention

1. Field of the Invention

The present invention relates to an optical viewing system that produces a simulated three dimensional image which can be viewed by individuals.

2. Prior Art

Humans have binocular vision for perceiving three dimensional scenes, that is, scenes having depth as well as height and width. A single viewing apparatus such as a single human eye, can perceive scenes only two dimensionally. The perception of depth in a three dimensional space is due to the difference in the angle or relative position of features of the scene at different distances from the viewer, in views taken from two spaced points of view, also known as parallax.

It is known to simulate a three dimensional image using dual two dimensional media. Two images of the same scene are prepared, each being a two-dimensional view of the three dimensional scene, but the two being taken from laterally spaced positions. When viewing one image with one eye and the other image with the other eye, the viewer perceives the image to have depth, in the same manner that the user's eyes perceive depth in actual three dimensional scenes.

An individual can view such a specially processed or configured dual two dimensional image through special eyeglasses. For example, the dual images can be superimposed on one two dimensional viewing area and separated using light polarization. One of the dual two-dimensional images is presented in light polarized at one angle, and the other is presented in light polarized 90° out of phase with the first. The observer views the superimposed images through eyeglasses which have lenses polarized in a complementary manner to separate the dual images such that one is presented to each eye. Each lens transmits one form of polarized light and inhibits passage of the other form of polarized light. The eyes of the viewer essentially receive images of the three dimensional scene from different perspectives, and the brain
interprets the dual two dimensional images as one scene having depth.

Various optical systems for producing three dimensional images in this manner are known, such as systems using lenticular lenses and films, and other stereoscopic systems which include lenses or prisms for transmitting the two images separately, one to each eye. Normally, stereoscopic scenes are static. However, moving pictures can also be accomplished. The two images can be projected from a single two dimensional projection, and separated by use of complementary colors, polarization or distinct diffracted light paths. In US Patent 4,740,836 - Craig, dual two dimensional images taken from slightly different perspectives are displayed side by side on one CRT, and are recombined for viewing using prisms which diffract the light from the lateral sides of the CRT so that each eye views one side of the CRT only. In US Patent 4,647,966 - Phillips et al, two images at distinct polarization angles are projected on one view screen and are viewed through polarized glasses. See also, for example, U.S. Patent Nos. 4,487,490; 4,552,443; and 3,695,878.

A somewhat different form of three dimensional image can be provided by producing two or more two-dimensional images or image layers which are projected to appear at different distances from the observer, and are viewed through one another with both eyes. Each layer shows only those elements of the three dimensional scene which are at equal distance from the viewer of the scene, each image layer then being projected such that the features in the nearer levels appear to be placed closer to the observer and in front of the features of one or more layers in a more remote level. In a simplest form, a two dimensional image showing only items in a foreground scene (being otherwise transparent) is presented in front of a two dimensional image of a background scene, the apparent spacing of the foreground and the background layers providing the image with depth. More complex forms can have a plurality of layers.

The latter, layered form of display has a number of implications for projection and viewing. In a layered projection
the observer's binocular vision is used directly to provide the perception of depth, unlike stereoscopic systems wherein the perception of depth is provided by presenting different views to the respective eyes. It is the lateral spacing of the observer's eyes that provides the difference in views, or parallax. A layered three dimensional scene is not the same from all angles relative to the viewing screen as it is in a separated perspective or stereoscopic image system wherein the separation of the cameras or the like which recorded the scene defines the parallax. Viewing a layered three dimensional scene can be more comfortable for the observer than viewing stereoscopic images, which may require substantial concentration.

Layered two dimensional images are geometrically less complicated than stereoscopic images because less attention is required with respect to angles. However layered images involve the further step of separating the foreground features (for presentation in a transparent field) from the background features (viewed through the transparent field). Layered images also require a substantially different projection apparatus than stereoscopic images, for projecting the layers at different apparent distances from the observer. Nevertheless, layered two dimensional images are appropriate and useful, especially due to the lack of angular complexity in the recording phase.

In US Patent 4,190,856 - Ricks, a three dimensional television apparatus based on superimposed two dimensional layers is disclosed. However the apparatus is complex, and notwithstanding the complexity there are certain problems that are encountered, for example with respect to opacity of the foreground features and the size of the projection apparatus. The projection of individual layers is achieved using plural projection CRTs. CRTs inherently define a substantial length along the center axis or Z axis of the electron beam, and also occupy a relatively large space laterally of the Z axis, for the deflection yoke. The individual CRTs according to Ricks are disposed at lateral spaces and along orthogonal axes in order to provide space for the CRTs. The image from each CRT is transmitted along a respective path, the paths
traversing full and/or half silvered mirrors whereby the images are combined to appear at different perspectives. According to one embodiment the foreground images are reduced in size for recombination, requiring lenses, and resulting in a composite image wherein the image from a foreground layer is overlaid on only a part of a larger background layer. For a four layer arrangement, even using images of equal size, the arrangement is quite complex.

It would be desirable to provide a three dimensional simulation which at the same time is compact, easy to operate and easy to view, wherein the image layers can readily be processed to provide an effective three dimensional view of a scene, preferably a moving picture scene, with minimal complexity.
SUMMARY OF THE INVENTION

It is an object of the present invention to provide an optical viewing system that produces a simulated, three dimensional image from two or more two-dimensional images which are projected at different apparent distances from the observer, and viewed through one another.

It is another object of the present invention to provide an optical viewing system which can display conventional two dimensional images or, alternatively, simulated three dimensional images.

It is another object of the present invention to provide an optical viewing system which produces special visual effects by reversing the foreground and background images.

It is an additional object of the present invention to provide an optical viewing system wherein the foreground image can be electronically processed distinct from the background image thereby enabling dynamic change of the foreground with respect to the background.

It is another object of the present invention to intermix images projected from different sources, e.g., overlaying an image from a video monitor with an image from a computer monitor.

It is a further object of the present invention to provide a simulated and sequential, three dimensional image with multiple two dimensional image projectors and multiple audio sources whereby a three dimensional image appears to change its relative location with respect to the background image and the audio signals track the relative change of the foreground images.

It is another object of the present invention to utilize a transparent liquid crystal display (herein LCD) screen to produce the foreground image.

It is an additional object of the present invention to provide an optical viewing system which displays randomly generated optical effects in simulated 3D.

In one embodiment, the optical viewing system produces a simulated three dimensional image having one or more foreground layers wherein features are placed on a substantially transparent
field, and one or more background features are projected to appear behind the foreground layer(s). The device can utilize two video monitors and a half silvered mirror. The two dimensional image produced by one monitor is transmitted through the half silvered mirror while the second image from the second monitor is reflected from the half silvered mirror and overlaid onto the image of the first monitor.

Preferably the foreground and background layers are presented on one display screen and are superimposed by a full silvered mirror for the background, and a half silvered mirror for the foreground and for any intervening layers between the foreground and the background. The observer looks through the foreground and intervening half silvered mirrors to the background, thereby viewing overlaid layers wherein the foreground features appear closer than the background. Since the foreground and background features appear to be located at different distances from the initial point of overlay of the two images, the images appear to the observer, in the optical viewing path, to be three dimensional.

The invention is particularly useful where a high contrast foreground image is overlaid on a background. One possibility is to employ a liquid crystal display panel at least for the foreground and intervening layers, wherein pixels in the display are selectively rendered opaque. When a foreground feature in such an arrangement has a high light level (e.g., a person wearing a white shirt), it is possible to correct the tendency of the background layer to appear through the high light level feature. This can be accomplished by adjusting the background layer (i.e., masking the background area overlaid by the light foreground feature by inserting a high light level mask in the background), or by side-lighting the foreground display such that light features are positively increased in luminance.

In a simple embodiment a display surface is oriented horizontally and the foreground and background layers are projected in horizontally divided areas of the display surface. Flat half silvered mirrors are inclined over the horizontal display surface areas for the foreground and intervening layers. A full silver
mirror is inclined over the last layer. The observer views the scene through the half silvered mirrors, whereby the layers are disposed at different distances from the observer and are superimposed.
BRIEF DESCRIPTION OF THE DRAWINGS

Further objects and advantages of the present invention can be found in the detailed description of the preferred embodiments when taken in conjunction with the accompanying drawings in which:

Fig. 1 schematically illustrates one embodiment of the optical viewing system utilizing two image projectors;

Fig. 2 schematically illustrates an embodiment of the optical viewing system including a mechanism which diminishes or enhances the background image with respect to the foreground image;

Fig. 3 schematically illustrates another embodiment of the optical viewing system wherein both image projectors are disposed at right angles with respect to the optical viewing path;

Fig. 4 illustrates another embodiment of the present invention wherein the foreground image is produced by a transparent LCD screen;

Fig. 5 illustrates a top view further embodiment of the present invention utilizing a plurality of image projectors and an optical processor system which overlays the two dimensional images from all the projectors;

Fig. 6 schematically illustrates a side view of the embodiment of the optical viewing system from the perspective of section line 6'-6" in Fig. 5;

Fig. 7 schematically illustrates an optical viewing system having a plurality of image projectors and a plurality of audio sources;

Figs. 8, 9, 10 and 11 schematically illustrate the use of a single monitor having a split screen as other embodiments of the optical viewing system;

Fig. 12 illustrates, in block diagram form, an electronic processing system for the optical viewing system;

Fig. 13 illustrates, in block diagram form, an electronic processing system for another embodiment of the optical viewing system;

Fig. 14 schematically illustrates a system for producing a pair of two dimensional image signals that, when combined, can simulate three dimensional images; and
Fig. 15 illustrates dual track video tape carrying the aforementioned image signals.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to an optical viewing system for producing a simulated, three dimensional image.

The basic principle behind the present invention is that a three dimensional image is simulated by projecting two two-dimensional images towards an individual when the virtual image of one of the two two-dimensional images and the actual or virtual image of the other are at different distances from the observer. This arrangement is distinct from a binocular or stereoscopic imaging technique wherein views of the same features from different perspective angles are superimposed. Unlike such a system, the invention provides a closer image having one set of features (the foreground features) which appear in front of a more distant image having an entirely different set of features (the background features). The foreground image has portions which are light transmissive such that when overlaid over the background image, the background image is transmitted and seen through those light transmissive portions of the foreground. The invention is also applicable to embodiments wherein a plurality of layers are overlaid to provide a series of overlaid features at different distances from the observer. However the invention is discussed primarily with respect to its simplest embodiment wherein one foreground image is projected over a background image such that the foreground appears closer to the observer.

Fig. 1 schematically illustrates one embodiment of the invention. Means for producing the two two-dimensional images includes, in this embodiment, video monitor 12 and video monitor 14. Both monitors have screens from which the image is projected. Monitors 12 and 14 are image projectors that project two dimensional images to an observation point or observer 16 over an optical viewing path 22. The two dimensional image projected by monitor 12 is transmitted through an optical processor, in this embodiment half silvered mirror 18, to observer 16. The two dimensional image from video monitor 14 is reflected 90° by half silvered mirror 18 and is directed to observer 16. Due to the positioning of the optical processor/mirror 18, the image from
monitor 14 is overlaid upon the image from monitor 12 and placed in viewing path 22. Observer 16 sees the image from monitor 14 at virtual plane 20, which as shown is closer to the observer than the image produced by monitor 12. Therefore, monitor 14 produces a foreground image and monitor 12 produces a background image. Since the images are spaced apart as thereby projected, the observer sees a simulated, three dimensional image. In the embodiment of Fig. 1, as long as the virtual image at plane 20 is spaced apart from the image produced by monitor 12, a three dimensional effect will be seen by observer 16. This three dimensional effect does not rely on any special glasses, prism or optical system to be worn or applied to the observer, and observers who view the image from different angles will see it differently, in the manner of true parallax.

The means for producing the two dimensional images can include television receivers, a video monitor that is supplied with a foreground image in one instance and a background image in another instance, or two pictures that are optically processed such that the images projected by the pictures or the light rays reflected off the pictures are overlaid upon each other and projected along an optical viewing path 22 towards observer 16. The two dimensional images may be images projected from, for example, a big screen or projected screen televisions systems, motion picture screens or other image projectors. The system can display images from different sources. For example, the real image, as viewed as reflected or emitted light from an object, could be optically processed and overlaid upon an image from a television monitor. In addition, the image source signal, obtained from a computer, could be overlaid onto an image source generated by a VCR.

The optical processor can include one or more half silvered mirrors, specially configured prisms or optical combiners which are suitably positioned to overlay the two images at different relative distances from the observer. Other specific projection techniques can also be used for similar functions. For example, the invention can be embodied with a semitransparent foreground display element such as a liquid crystal display having pixel elements which are
controllably made opaque, the background being viewable through those pixels which remain transparent. Such display elements can also be stacked to provide a three dimensional block configuration. An arrangement of a plurality of layers may more convincingly simulate a three dimensional scene; however, depending on the complexity of the scene and the particular copy used, two layers may also be appropriate. Light modulating ceramic materials such as PLZT (lead lanthanum zirconate titanate) with embedded conductors, for example, can be provided in a relatively thin panel for use in a stacked configuration or otherwise arranged with multiple layers. Other means of displaying three dimensional images are also possible for displaying images which appear to be superimposed at different apparent distances from the observer.

Fig. 2 schematically illustrates a system similar to that shown in Fig. 1. However, the system further includes a polarizer 30, disposed between monitor 12 and optical processor/half silvered mirror 18, and a second polarizer 32 disposed downstream from polarizer 30. Second polarizer 32 is rotated about its optical axis by a motor or other device 34 such that the relative angle, between the angle of polarization of polarizer 30 and the angle of polarization of the second polarizer 32, changes dependent upon the position of polarizer 32. In other words, polarizer 30 has a known angle of polarization such that light transmitted through polarizer 30 has a known angle of polarization. Polarizer 32 also has a known angle of polarization and alters light that passes through it such that the light contains only that angle of polarization. Assuming the angle of polarization of polarizer 30 is aligned with a reference axis, i.e., is set at 0°, and assuming that the relative angle between the axis of polarization of polarizer 32 is 15° with respect to the reference axis, the relative angle between the first and second polarizer is 15°. By rotating polarizer 32 such that the relative angle is reduced to 0°, light that is transmitted through polarizer 30 would be similarly transmitted through polarizer 32 without change. However, if the relative angle between polarizer 30 and polarizer 32 is changed to 90°, no light would be transmitted through the second polarizer 32 due to
the crossed angles of polarization between the two polarizers.
Monitor 12 provides a background, two dimensional image. By
rotating polarizer 32 about its optical axis, the visual intensity
of the background image is enhanced or diminished based upon the
relative angle between the polarizers. Therefore, the three
dimensional effect simulated by the system is changed based upon
the intensity of the background image. Another embodiment of the
invention can be constructed by placing polarizer 30 in front of
the monitor 14. Alternatively, the second polarizer 32 could be
moved to a position intermediate polarizer 30 and optical processor
18.

Fig. 3 schematically illustrates a system wherein image
projectors 12 and 14 are at right angles with respect to optical
viewing path 22. The optical processor in this embodiment includes
half silvered mirror 40 and half silvered mirror 42. The relative
angle between mirrors 40 and 42 is 90°. To optically align image
projectors or monitors 12 and 14 with respect to optical viewing
path 22, imagery lines intersecting mid point m1 and m2 and n1 and
n2 of the monitors and mirrors are aligned to form a series of
perpendicular lines with respect to a center line within optical
viewing path 22. This alignment ensures that the foreground and
background images are accurately overlaid into path 22.

Fig. 4 schematically illustrates another embodiment of the
present invention wherein screen 50 is part of the image producing
system and the optical processor. The screen can be an LCD panel,
PLZT or similar element having selectively operable light
modulating structures disposed in an array. Fig. 4 shows an image
projector, such as video monitor 12, which produces one two-
dimensional image. That image is projected through the transparent
portions of the screen to appear at the relatively more remote
virtual distance from the observer. The "transparent" portions of
the screen are preferably quite transparent but can also be side
lighted, slightly translucent, etc. Translucence in the screen may
further lend to the simulation of the three dimensional scene,
particularly for outdoor vistas, wherein the distant background may
be slightly obscured by haze. In any event, when the screen is
activated by an image signal supplied to the screen, selected portions darken (become opaque) to create the foreground image and the remaining portions at least substantially pass the background image. An LCD screen suitable for use according to the invention is commercially available, for example, from In Focus Systems, Inc. of Tualatin, Oregon as Model No. PZV6448C+2. Kodak produces a Kodak DataShow HR/M Projection Pad that is also similar to the "transparent LCD screen" described herein. Other transparent screens with selectable pixels or light modulators are available from other manufacturers. The transparent screen 50 is the second image projector because when the screen is activated and an image control signal is applied, an image is generated by the screen and superimposed on the background image appearing through the remaining portions of the screen, which remain transparent. The screen is part of the optical processor since the screen is transparent to light and permits light and images generated and projected by monitor 12 to pass therethrough. Therefore, screen 50 combines the background image, produced by monitor 12, and the foreground image, produced by screen 50, and projects the resultant simulated three dimensional image into optical viewing path 22.

The image produced by screen 50 can be electronically processed readily. Therefore, the foreground image can be used to create special video effects, for example with computer generated figures projected over a background. Also, the image from the screen can be processed to conform to the size of the background screen.

Fig. 5 illustrates a plurality of two dimensional image projectors and particularly schematically illustrates video monitors 12, 14 and 15. This viewing system includes two half silvered mirrors 60 and 62 as part of the optical processor that overlays the two dimensional images produced and projected, respectively, by monitors 12, 15 and 14. The screen on monitor 15 is generally parallel with the plane of the drawing. Fig. 6 schematically illustrates a side view of the system shown in Fig. 5. As shown in Fig. 6, the intermediate image produced by video monitor 15 is projected upwards toward half silvered mirror 60.
which then reflects the image horizontally toward observer 16. Returning to Fig. 5, the image projected by video monitor 12 is transmitted through mirrors 60 and 62 into optical viewing path 22. The image projected by video monitor 14 is reflected by half silvered mirror 62 and is directed horizontally to observer 16 in optical viewing path 22. Therefore monitor 12 provides a background image, monitor 15 provides an intermediate image and monitor 14 provides a foreground image. Initially the intermediate image from monitor 15 is overlaid upon the background image from monitor 12 and then the foreground image from monitor 14 is overlaid upon the resulting composite image. Thus, a triple image is projected to observer 16 in optical viewing path 22. The principles of the present invention can be utilized with a plurality of monitors such that 4, 5, 6, etc. images can be overlaid and projected into a single optical viewing path toward observer 16. The simulated, three dimensional image effect is achieved as long as the virtual images from each monitor are at different distances with respect to the observer.

Fig. 7 schematically illustrates a visual system combined with an audio system. Video and audio signal generator 70 includes a sequential video image generator 72 and an audio generator 74. The audio generator is coupled to a plurality of speakers, one of which is speaker 76. The visual images developed by video generator 72 may be linked, associated or coordinated with the audio signals produced by audio generator 74. For example, if a person were viewed as walking toward observer 16 by progressively and sequentially showing the person visually advancing from background monitor 12 to intermediate monitor 17 and then to foreground monitor 14, sound representing the person's footsteps could be initially generated by rear-disposed speakers 76, 78, then sequentially by intermediate speakers 80, 82 and finally by foreground speakers 84, 86. The multiple source audio system is associated with the sequentially presented two dimensional images that are combined and overlaid into optical viewing path 22. The audio signals are fed in coordination with the sequential video signals.
Figs. 8, 9, 10, and 11 illustrate the use of a single image projector that has a split screen such that the projector produces two two-dimensional images. Fig. 8 schematically shows an image display area 110 that can be the screen of a single video monitor. The image display area is divided into screen areas 112 and 114. If area 110 is the screen of a video monitor, the signals projected onto area 110 are separated to form two distinct screens 112 and 114.

Fig. 9 schematically illustrates the placement of the optical processor, that includes half silvered mirror 116 and fully reflective mirror 118, over area 110. The foreground image of the house and tree on upper screen 112 is reflected and is directed at a 90° angle by half silvered mirror 116 and is simultaneously overlaid upon the background image of the mountain projected from lower screen 114. Fig. 10 is a view of monitor 100 as seen by the observer. A plate 120 blocks the view of upper screen 112 and mirror 118 that is part of the optical processor. The initial images from screens 112 and 114 and the composite image, generally designated by 122, illustrate that the foreground image initially developed by upper screen 112 need not be inverted from top to bottom or from left to right because the foreground house and tree scene is twice reflected. Care must be taken in optically processing the images in the embodiment shown in fig. 9. To the observer, the optical distances must be different to achieve a 3D effect. This may be accomplished by moving the optical processor, mirrors 118 and 116 away from the screen surfaces.

Fig. 11 illustrates another embodiment wherein video monitor 124 produces a background image on screen portion 126 and a foreground image on screen portion 128. The background image is seen by observer 130 at virtual plane 132, whereas the foreground image is seen at virtual plane 134. Since both images in this embodiment are reflected once, both images must be electronically or optically processed such that the initial images from screen 126 and 128 are vertically inverted and are inverted from left to right.
Fig. 12 illustrates, in block diagram form, an electronic circuit that processes these image signals. Receiver 210 essentially receives two television signals. Signal splitter 212 separates those signals and produces a background image signal on line 214 and a foreground image signal on line 216. Inverter circuit 218 can be used to invert the signal from top to bottom; left to right perspectives can be reversed by l-r processor/inverter 220. The resultant signal is applied to the foreground monitor. This circuit could be utilized with the optical system shown in Fig. 1 since the foreground image is inverted and left to right reversed by the optical processor. With respect to the background image signal, this signal must be time keyed to the foreground signal and hence delay circuit 222 is utilized. Dependent upon the convention adopted by the television broadcast stations, left to right inverter 220 could be eliminated in one optical viewing system given the particular configuration of the optical processors and the positioning of the video monitors in that system. In other configurations, both top to bottom inverter 218 and left to right processor 220 would be utilized to achieve the proper viewing characteristics. Otherwise, the image from one or more of the image projectors could be optically processed such that the proper view is presented for the observer. Fig. 11 requires both the foreground and background images to be processed in an inverted and left to right sense.

The optical viewing system in the embodiments described above could be further used with conventional, two dimensional television signals now commonly broadcast. Simply by disabling a portion of the screen or one of the monitors (contrast the embodiment in Fig. 11 to the embodiment in Fig. 1), the observer could continue to view conventional, two dimensional images rather than the simulated, three dimensional images. Also, the optical viewing system of the present invention can be used to generate special effects whereby the background and foreground images are reversed. In the example shown in Figs. 9 and 10, the special effect would result in the mountain scene being placed over the house scene. This would result in an "impossible" image.
Fig. 13 illustrates the use of a computer or microprocessor 310 to generate dissimilar foreground and background images. Computer or microprocessor 310 (which includes a memory and other associated devices) is controlled by an input device 312. Microprocessor 310 commands controllers 314, 316 to generate control signals to select certain images from the foreground optical disc 318 and the background optical disc 320, respectively. The signals generated by the two optical discs are applied to conditioning circuits 322 and 324 and ultimately applied to monitors 326 and 328. Observer 330 would then be able to control the foreground and background visual scenes by changing input 312. The computer/microprocessor could be programmed to randomly select image signals which would result in randomly generated optical effects. Otherwise, the use of this optical viewing system is capable of eliminating the "blackout" or video blanking when the video laser disc is being initially accessed. During the accessing period, the other laser disc/display monitor would produce an image that is displayed on the corresponding monitor in the three dimensional system. In other words, one screen is always active.

Fig. 14 illustrates a system for producing two dimension image signals that can simulate three dimensional images. This arrangement can be used to separate the foreground and background components of a live production such that the two components can be later recomposed according to the invention to obtain a simulated three dimensional presentation wherein the foreground component appears to be closer to the observer than the background component. The background set or scene 510 and the foreground set or scene 512 can be two dimensional or three dimensional. In the recorded version both the background and the foreground (standing alone apart from the other) will be two dimensional. However as combined at different apparent distances the three dimensional simulation is obtained. The system includes two cameras 520 and 522, and optical means for separating the foreground and background scenes from one another such that each of the foreground scene and the background scene is recorded exclusively by a respective one of the two cameras 520, 522. The outputs of cameras 520 and 522
are coupled to two recorders, or preferably to a single dual channel recorder 516 as shown.

There are various means by which the foreground and background can be separated. According to the embodiment shown the background image is viewed exclusively by camera 520 due to the placement and orientation of camera 520 to exclude the foreground scene. Background camera 520 simply views past the foreground scene to the background. The background scene is shielded from view by the foreground camera 522. A first transparent polarizing filter or panel 500, having a first polarizing angle, is disposed between the foreground and the background. A second transparent polarizing filter is disposed between the foreground image and the first polarizing panel. The second polarizing filter 532 has a polarizing angle which is out of phase with the angle of the first polarizing panel 500, and thus excludes the image of the background scene in the signal recorded by camera 522. Although the background camera 520 views through the polarizing panel 500, the background image is not excluded because camera 520 is not provided with an out-of-phase polarizing filter as is camera 522.

There are other means by which two images can be recorded separately by two cameras. Examples include the use of illumination in complementary colors, combined with corresponding filters to exclude at each respective camera, orientation of both the foreground and background cameras to view their respective scenes exclusively, etc.

When recording a foreground image as shown in Fig. 14, the combined effects of the polarizing panel 500 and polarizing filter 532 is to cause the background to appear black to camera 522. This presents no problem when the foreground and background images are to be recomposed using reflection from a half silvered mirror for viewing the foreground, and viewing through the half silvered mirror to view the background. However, this technique will not work if the foreground image is to be projected in front of the background image using a liquid crystal display or the like wherein the darkened areas are provided by rendering opaque certain pixels in an otherwise transparent panel. The opaque pixels would block

SUBSTITUTE SHEET
the view of the background. In order to overcome this problem it is possible to define a key color and to illuminate the front side of panel 100 in this color, whereby the foreground set is initially recorded on a matte background in the key color. By processing the image to convert all occurrences of the key color to white, the resulting image can be displayed on an opaque-pixel type display while allowing the background image to appear around the elements of the foreground scene. The key color (or the background color behind the foreground scene) can be made white, black or another key color defining the edges of a foreground image to be superimposed on a background matte, depending on the mode of display, and specifically whether the observer will view through a positive or negative form of foreground display element. A liquid crystal display (with controllably opaque pixels) is a negative form of display. Gas discharge displays and controllable electroluminescent displays (with controllably illuminated pixels) are examples of positive forms of display.

According to the embodiment of Fig. 14, both the foreground information and the background information are stored on a single storage medium 516, which can be analog or digital. This can be a dual channel video tape recording means or another form of storage. For example, a video laser disk can be used to store the foreground and background in a sampled digital format. The information can be stored in alternating data packets for successive frames of foreground and background video information, respectively. As another possibility the foreground and background can be stored in successive tracks for reading via a multi-head reader. A further possibility is to store the information for the foreground and the background on opposite sides of a double sided media such as a laser disk.

In the optical viewing system and the recording system, the foreground image must be specially processed such that when that image is projected towards the observer, the background image is only blocked by the relevant portions of the foreground. To display a person in the foreground using the half silver mirror method, the person may be photographed against a black background.
The "black background" in the foreground image results in light transmissive regions in the image, thereby permitting the background image to be projected towards the observer.

The problem discussed above is encountered in viewing video foreground images through a negative type display (with darkened pixels) wherein the background image can be occluded by the dark portions of the foreground surrounding the foreground image. This is correctable by providing the foreground image with a white area around the foreground scene elements, whereby the pixels in the negative-type view-through foreground display remain transparent. The white surround area can be provided when the foreground image is initially recorded, or can be added thereafter to replace a different key color. However, in a negative-type view-through display, there is a further problem which is encountered when one or more elements in the foreground are in fact white in color. These lighter areas in the foreground scene become the more transparent areas in the foreground display means, and accordingly increase the transmission of the background image to the observer in these areas. An additional masking layer can be built into the array, the masking layer being arranged to block transmission of the background image through those areas which are intended to represent an opaque but light-colored foreground object. The masking layer can be provided with edge lighting or the like, in order to increase the light level behind the light colored foreground feature while deemphasizing darker features in the background. In this manner, the background does not appear through the foreground as a phantom or bleed-through image.

Another possibility is to modulate the signal applied to the background image such that opaque but light-colored foreground areas are logically ORed with the background signal to provide a light background behind the foreground object notwithstanding a dark background otherwise provided in the area. These anti-phantom procedures are useful provided the observer is located at a predetermined position relative to the projection axis, but may cause edge effects if the background is altered as necessary for one angle of view but viewed from a different angle.
In connection with an arrangement wherein at least a part of the composite layered image is processed in the form of video, it is possible to use the video blanking interval to encode part of the information needed. For example, in the event the background image is a video encoded scene and the foreground image is the image of a figure or sprite which is to move about in front of the background, the video blanking interval of the video background can be used to encode the position of the foreground figure, to encode the screen positions of each pixel to be made opaque (or transparent), or even to transmit a bitmap of positions and intensities. Whereas a data representation of a figure or the like in the foreground normally will require substantially less information than a full resolution video picture (as in the background), there is adequate time in the video blanking interval to encode at least simple foreground image information. The same idea can be applied to a foreground video signal and more limited encoded background.

A wide variety of lighting arrangements are possible in conjunction with an LCD or similar display apparatus. For example, the illuminations can be of any type (incandescent, fluorescent, polarized, etc.), intensity, angle or position relative to the LCD screen (front, back, oblique, edge, etc.), in order to achieve the desired effect.

The invention has been discussed with reference to preferred embodiments having particular devices for producing the respective image layers, and for viewing the closer image(s) in front of the more remote image(s). It should be appreciated that the invention is subject to a number of variations within the spirit and scope of the invention. For example, various optical arrangements can be provided in order to vary the nature of the display apparatus while displaying images over one another at different apparent distances from the observer, including lens or prism arrangements which diffract light from one or more display devices. Although the preferred embodiments concern flat screens and flat panels, it is also possible to apply the invention to a curved screen arrangement. Whereas the respective image layers of the preferred
embodiments are entirely two dimensional, it is likewise possible to provide a three dimensional image for one or more of the layers, e.g., by displaying a foreground holographic three dimensional image in front of a background. The invention can be applied to these display particulars as well as to other emerging technologies, and accordingly reference should be made to the appended claims rather than the discussion of preferred examples in order to assess the scope of the invention in which exclusive rights are claimed.
We claim:

1. An optical viewing system for producing a simulated three dimensional image of a scene having foreground features at a relatively closer apparent distance from an observer superimposed on background features at a relatively greater apparent distance from the observer, the system comprising:

 means for producing at least two images, each of the two images including a presentation of features substantially at predetermined distance from the observer and the predetermined distances for the two images being unequal;

 optical processing means operable to present said at least two images over one another such that the foreground features are superimposed on the background features as presented to the observer, and wherein the at least two images are presented at different apparent distances from the observer.

2. The optical viewing system according to claim 1, wherein the optical processing means comprises at least one half silvered mirror inclined at an angle over a display screen representing features at said closer apparent distance, whereby an observer viewing through the half silvered mirror sees an image of the features at the closer apparent distance reflected by the half silvered mirror, disposed over an image transmitted through the half silvered mirror.

3. The optical viewing system according to claim 1, wherein the optical processing means comprises a mirror disposed to reflect toward the observer an image representing said background features, and further comprising at least partly transparent means for projecting the foreground features between the mirror and the observer.

4. The optical viewing system according to claim 3, wherein the at least partly transparent means includes a half silvered mirror and wherein the full mirror and the half silvered mirror are arranged to reflect adjacent coplanar display screen areas.
5. The optical viewing system according to claim 4, wherein the adjacent coplanar display screen areas are distinct areas of a one display screen simultaneously displaying the foreground image and the background image side by side, and the half silvered mirror and the full mirror are respectively disposed over said foreground image and said background image, whereby upon viewing through the half silvered mirror and the full mirror said foreground image is superimposed on the background image at a closer apparent distance to an observer.

6. The optical viewing system according to claim 1, wherein said at least two images are each two-dimensional images.

7. The optical viewing system according to claim 1, wherein at least one of said at least two images is a three-dimensional holographic image.

8. An optical viewing system for producing a simulated three-dimensional image of a scene having foreground features at a relatively closer apparent distance from an observer superimposed on background features at a relatively greater apparent distance from the observer, the system comprising:

 means for producing at least two two-dimensional images adjacent one another on distinct areas of a two-dimensional display, each of the two two-dimensional images including a presentation of features substantially at a predetermined distance from the observer in the scene and the predetermined distance for respective said two-dimensional images being unequal;

 optical processing means operable to present said at least two two-dimensional images over one another such that the foreground features are superimposed on the background features as presented to the observer, and wherein the at least two two-dimensional images are presented at different apparent distances from the observer.
9. The optical viewing system according to claim 8, wherein the optical processing means comprises at least one half silvered mirror inclined at an angle over one of said distinct areas of the display screen representing features at said closer apparent distance, whereby an observer viewing through the half silvered mirror sees an image of the features at the closer apparent distance reflected by the half silvered mirror, disposed over an image transmitted through the half silvered mirror.

10. The optical viewing system according to claim 8, wherein the optical processing means comprises a mirror inclined at an angle over the display screen over one of said distinct areas of the display screen representing said background features, and further comprising at least partly transparent means for projecting the foreground features between the mirror and the observer.

11. An optical viewing system for producing a simulated three dimensional image, comprising:

first means for generating and displaying an image via a first display means;

second means for generating and displaying an image on a second display means, the second display means being a substantially transparent display means, whereby an observer can view through unoccupied areas of the second display means;

wherein each of said display means is located at different, predetermined locations along an optical viewing path and wherein the image displayed by said first means for generating and displaying is projected through said second means for generating and displaying.

12. The optical viewing system according to claim 11, wherein said first means for generating and displaying comprises a video monitor.

13. The optical viewing system according to claim 9, further comprising a multiple source audio system, said multiple audio
sources being spaced apart and arranged to playback audio signals in coordination with sequential two dimensional images produced by said first and second means for generating and displaying.

14. The optical viewing system according to claim 11, wherein said first means for generating and displaying includes an image projector and said second means for generating and displaying includes a controllable pixel display spaced therefrom, said controllable pixel display being substantially transparent such that the image produced by the controllable pixel display is overlaid upon the image produced by said image projector.

15. The optical viewing system according to claim 14, wherein the controllable pixel display comprises a liquid crystal panel having a field of pixel elements which are controllably rendered opaque.

16. The optical viewing system according to claim 14, wherein the controllable pixel display comprises a positive pixel display panel having a field of pixel elements which are controllably illuminated.

17. The optical viewing system according to claim 14, wherein the image produced by the image projector is directed by a further means for generating and displaying through said controllable pixel display.

18. A recording system operable to produce a plurality of images for simulating a three dimensional scene, comprising:
 at least two image recorders, each being operable to record a respective image signal, each said recorder being coupled to an output of a corresponding image sensing apparatus;
 optical means for separating images at different depths of a three dimensional scene, for presentation of the images exclusively to one of the image sensing apparatus, whereby the images at said
different depths can be projected over one another to simulate the three dimensional scene.

19. The recording system according to claim 18, wherein the optical means for separating the images comprises at least two polarizing filters aligned out of phase, the at least two polarizing filters being disposed between at least one of the images and a respective one of the image recorders, for excluding said at least one of the images from said respective one of the image recorders.
1. An optical viewing system for producing a simulated three dimensional image of a scene having foreground features at a relatively closer apparent distance from an observer superimposed on background features at a relatively greater apparent distance from the observer, the system comprising:

 means for producing at least two images, each of the two images including a presentation of features substantially at a predetermined distance from the observer and the predetermined distances for the two images being unequal;

 optical processing means operable to present said at least two images over one another such that the foreground features are superimposed on the background features as presented to the observer, and wherein the at least two images are presented at different apparent distances from the observer;

 said optical processing means comprising a mirror disposed to reflect toward the observer an image representing said background features, and further comprising at least partly transparent means for projecting the foreground features between the mirror and the observer;

 wherein the at least partly transparent means includes a half silvered mirror and wherein the full mirror and the half silvered mirror are arranged to reflect adjacent coplanar display screen areas.

2. [Canceled]

3. [Canceled]
4. [Canceled]

5. The optical viewing system according to Claim 1, wherein the adjacent coplanar display screen areas are distinct areas of one display screen simultaneously displaying the foreground image and the background image side by side, and the half silvered mirror and the full mirror are respectively disposed over said foreground image and said background image, whereby upon viewing through the half silvered mirror and the full mirror said foreground image is superimposed on the background image at a closer apparent distance to an observer.

6. The optical viewing system according to Claim 1, wherein said at least two images are each two-dimensional images.

7. An optical viewing system for producing a simulated three dimensional image of a scene having foreground features at a relatively closer apparent distance from an observer superimposed on background features at a relatively greater apparent distance from the observer, the system comprising:

 means for producing at least two images each of the two images including a presentation of features substantially at a predetermined distance from the observer and the predetermined distances for the two images being unequal;

 optical processing means operable to present said at least two images over one another such that the foreground features are superimposed on the background features as presented to the observer;
wherein the at least two images are presented at different apparent distances from the observer and at least one of said at least two images is a three dimensional holographic image.

8. An optical viewing system for producing a simulated three dimensional image of a scene having foreground features at a relatively closer apparent distance from an observer superimposed on background features at a relatively greater apparent distance from the observer, the system comprising:

means for producing at least two two-dimensional images adjacent to one another on distinct areas of a single two-dimensional display, each of the two two-dimensional images including a presentation of features substantially at a predetermined distance from the observer in the scene and the respective predetermined distances for said two two-dimensional images being unequal;

optical processing means operable to present said at least two two-dimensional images over one another such that the foreground features are superimposed on the background features as presented to the observer, and wherein the at least two two-dimensional images are presented at different apparent distances from the observer.

9. The optical viewing system according to claim 8, wherein the optical processing means comprises at least one half silvered mirror inclined at an angle over one of said distinct areas of the display screen representing features at said closer apparent distance, whereby an observer viewing through the half silvered
mirror sees an image of the features at the closer apparent
distance reflected by the half silvered mirror, disposed over an
image transmitted through the half silvered mirror.

10. The optical viewing system according to claim 8, wherein
the optical processing means comprises a mirror inclined at an
angle over the display screen over one of said distinct areas of
the display screen representing said background features, and
further comprising at least partly transparent means for
projecting the foreground features between the mirror and the
observer.

11. An optical viewing system for producing a simulated
three dimensional image, comprising:

first means for displaying an image on a first electronic
display device;

at least one second means for displaying an image on at
least one second electronic display device, said at least one
second electronic display device being a substantially
transparent display device, whereby an observer can view through
transparent areas of the second electronic display device;

wherein each of said display devices is located at
different, predetermined locations along an optical viewing path
and wherein the image displayed by said first electronic display
device is projected through said at least one second electronic
display device.
12. The optical viewing system according to claim 11, wherein said first electronic display device comprises a video monitor.

13. The optical viewing system according to claim 11, further comprising a multiple source audio system, said multiple audio sources being spaced apart and arranged to play back audio signals in coordination with sequential two dimensional images produced by said first and second electronic display devices.

14. The optical viewing systems according to claim 11, wherein said first electronic display device includes an image projector and said second electronic display device includes a controllable pixel display spaced therefrom, said controllable pixel display being substantially transparent such that the image produced by the controllable pixel display is overlaid upon the image produced by said image projector.

15. The optical viewing system according to claim 14, wherein the controllable pixel display comprises a liquid crystal panel having a field of pixel elements which are controllably rendered opaque.

16. The optical viewing system according to claim 14, wherein the controllable pixel display comprises a positive pixel display panel having a field of pixel elements which are controllably illuminated.

17. The optical viewing system according to claim 14, wherein the image produced by the image projector is directed by a further display device through said controllable pixel display.
18. A recording system operable to produce a plurality of images for simulating a three dimensional scene, comprising:

at least two image recorder channels, each being operable to record a respective image signal, each said recorder channel being coupled to an output of a corresponding image sensing apparatus;

optical means for separating images at different depths of a three dimensional scene, for presentation of the images exclusively to one of the image sensing apparatus, whereby the images at said different depths can be projected over one another to simulate the three dimensional scene.

19. The recording system according to claim 18, wherein the optical means for separating the images comprises at least two polarizing filters aligned out of phase, the at least two polarizing filters being disposed between at least one of the images and a respective one of the image recorders, for excluding said at least one of the images from said respective one of the image recorders.

20. The recording system according to claim 18, wherein said at least two image recorder channels are synchronized with each other.

21. The recording system according to Claim 18 wherein the image signals from a first recorder channel are stored on a first side of an optical disk and the image signals from a second recorder channel are stored on a second side of said optical disk.
22. An optical viewing system according to claim 8, further comprising a multiple source audio system, said multiple audio sources being spaced apart and arranged to play back audio signals separately in coordination with the at least two two-dimensional images produced by said single two-dimensional display.

23. An optical viewing system for producing a simulated three-dimensional image comprising:

at least one first means for displaying a two-dimensional image on a first electronic display device at a first predetermined distance from an observer;

at least one second means for displaying a three-dimensional holographic image at a second predetermined distance from an observer,

said holographic image superimposed over said two-dimensional image in a viewing path to create a three-dimensional composite image when viewed by an observer.

24. The optical viewing system of claim 23, wherein said first means for displaying a two-dimensional image is a video monitor and said first predetermined distance is greater than said second predetermined distance.

25. The optical viewing system of claim 23, wherein said first means for displaying a two-dimensional image includes a controllable pixel display being substantially transparent and the first predetermined distance is less than the second predetermined distance such that the image produced by the
controllable pixel display is overlaid upon the three-dimensional holographic image.

26. The optical viewing system of claim 23, wherein said first means for displaying a two-dimensional image includes a controllable pixel display being substantially transparent and the first predetermined distance is greater than the second predetermined distance such that the image produced by the controllable pixel display is overlaid upon the three-dimensional holographic image.

27. The optical viewing system according to claim 11 wherein a pixel masking array is provided between said first electronic display device and said at least one second electronic display device, said pixel masking array provided to mask at least a portion of an image displayed on said first electronic display device,

whereby darker colored images displayed on said first electronic display device are prevented from bleeding through and interfering with opaque but light-colored images displayed on said at least one second electronic display device.

28. The optical viewing system according to claim 11, wherein means are provided for comparing opaque but light-colored pixels displayed on said at least one second electronic display device with pixels displayed on said first electronic display device, and

means are provided for selectively altering darker pixels displayed on said first electronic display device to minimize
bleed-through of darker pixels on said first electronic display
device into lighter pixels on said second electronic display
device.

29. The optical viewing system according to claim 11,
further comprising:

at least two optical disk data storage devices for storing
background and foreground images to be displayed;

optical disk controllers for generating control signals to
selectively retrieve foreground and background images from said
at least two optical disk data storage devices;

input control means for indicating foreground and background
images to be displayed; and

microprocessor means for interfacing between said input
control means and said optical disk controllers;

wherein said foreground images stored on one of said at
least two optical disk data storage devices are provided to said
at least one second electronic display device and background
images stored on one of said at least two optical disk data
storage devices are provided to said first electronic display
device.

30. The optical viewing system according to claim 29,
wherein background and foreground images to be displayed are
randomly selected by said microprocessor.

31. The optical viewing system according to claim 29,
wherein at least one of said at least two optical disk data
storage devices provides an image to be displayed on at least one
of said first and said second electronic display devices when one of said optical disk data storage devices is being accessed.

32. The optical viewing system according to claim 8, further comprising:

at least two optical disk data storage devices for storing background and foreground images to be displayed;

optical disk controllers for generating control signals to selectively retrieve foreground and background images;

input control means for designating foreground and background images to be displayed; and

microprocessor means for interfacing between said input control means and said optical disk controllers;

wherein said foreground images stored on one of said at least two optical disk data storage devices are provided to a first area on said two-dimensional display and background images stored on one of said at least two optical disk data storage devices are provided to a second area on said two-dimensional display.

33. The optical viewing system according to claim 32, wherein background and foreground images to be displayed are randomly selected by said microprocessor.

34. The optical viewing system according to claim 33, wherein at least one of said at least two optical disk data storage devices provides an image to be displayed on at least one of said first and second areas on said two-dimensional display
when one of said optical disk data storage devices is being accessed.

35. A multiple source audio system for use in conjunction with an optical viewing system for producing a simulated three-dimensional image of a scene, the system comprising:

multiple audio sources being spaced apart and arranged to play back audio signals in coordination with foreground features at a relatively closer apparent distance from an observer and background features at a relatively greater apparent distance from the observer.
STATEMENT UNDER ARTICLE 19

Claims 1 and 5-19, as amended, and new claims 20-33 appear in this application. The limitations of canceled Claims 3 and 4 have now been incorporated into independent Claim 1. Claims 2-4 have been canceled. Claim 7 has been amended to place it in independent form. Applicants have also made certain minor changes to Claims 8, 11-14, 17 and 18.

The claims are believed to be patentably distinguishable over the various references cited in the International Search Report of October 13, 1992. Significantly, U.S. Patent Nos. 3,891,305 to Fader, 3,515,454 to Paganelli, U.S. Patent No. 3,079,959 to Johnston and 4,190,856 to Ricks, do not disclose a three-dimensional optical viewing system capable of utilizing standard television broadcast and receiving equipment and standard television bandwidths for achieving a three-dimensional effect.

With regard to U.S. Patent Nos. 4,559,556 to Wilkins and 4,740,836 to Craig, each of these references recite inventions
which require the use of special eyewear. Applicants' invention requires no such eyewear.

Claim 7 is also distinguishable from the references cited by the Examiner. Claim 7 relates to use of a hologram in conjunction with a two-dimensional display to achieve an enhanced three-dimensional effect. None of the cited references disclose such a system.

Claim 11 has been amended to more clearly indicate that the first and second display means in the invention are electronic devices. Claim 11 has also been amended to indicate that their may be a plurality of second electronic display devices for providing foreground or middle ground information. Claims 12-14 and 17 have been amended to be consistent with Claim 11.

In Claim 18, the language has been amended to indicate that at least two image recorder channels are provided.

New Claim 20 has been added to claim additional detail pertaining to an image recording system. New Claim 21 is directed to a multiple source audio system in combination with the invention as recited in independent Claim 8. Claim 21 also recites further detail concerning a recording format system.

New Claim 22 recites the audio system of the invention in combination with the split screen embodiment of Claim 8.

New Claims 23-25 are further recitations of the invention relating to Claim 7 involving the use of two-dimensional video display screens with three-dimensional holographic images. Claim 26 has been amended in a similar manner.
New Claims 27 and 28 recite two alternative means for preventing bleed-through of darker background images through lighter foreground images.

Claims 29-31 are directed to a system in accordance with Claim 11 wherein background and foreground images may be stored on optical disks and can be displayed in a manner selected by a user. Claims 32-34 parallel Claims 29-31, but depend from Claim 8 rather than Claim 11.

New Claim 35 recites an audio system according to the present invention for use with three dimensional viewing systems of all kinds.

Applicants herewith submit retyped pages 24-34 which include the amended Claims 1 and 5-19, and new Claims 21-35.
A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC(5)</th>
<th>US Cl</th>
<th>According to International Patent Classification (IPC) or to both national classification and IPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>G02B 27/22, 27/26; H04N 13/00</td>
<td>359/465, 471, 472, 479; 359/88, 90</td>
<td></td>
</tr>
</tbody>
</table>

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S.: 359/89, 91; 359/462, 464, 478

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US A, 4,740,836 (Craig), 26 April 1988, See entire document.</td>
<td>1-19</td>
</tr>
<tr>
<td>A</td>
<td>US A, 4,559,556 (Wilkins), 17 December 1985 See entire document.</td>
<td>1-19</td>
</tr>
<tr>
<td>X</td>
<td>US A, 3,891,305 (Fader), 24 June 1975 See col. 8, line 5-col. 9, line 10</td>
<td>1,6,8, and 11-19</td>
</tr>
<tr>
<td>X</td>
<td>US A, 3,515,454 (Paganelle), 02 June 1970 See col. 2, lines 18-55.</td>
<td>1-4, 6 and 8-12</td>
</tr>
<tr>
<td>X</td>
<td>US A, 3,079,959 (Johnston), 05 March 1963 See col. 1, line 69-col. 3, line 33.</td>
<td>1,6,8 and 11</td>
</tr>
<tr>
<td>X</td>
<td>US A, 4,190,856 (Ricks) 26 February 1980 See col. 7, line 49-col. 8, line 16.</td>
<td>1,6,8 and 11-19</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. []

See patent family annex. []

Date of the actual completion of the international search

31 August 1992

Date of mailing of the international search report

13 October 1992

Name and mailing address of the ISA/Commissioner of Patents and Trademarks

Box PCT

Washington, D.C. 20231

Facsimile No.: NOT APPLICABLE

Authorized officer: SCOTT SUGARMAN

Telephone No.: (703) 308-4821
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
I. Superimposing display device which may include mirrors, claims 1-6 and 8-10.
II. A superimposing display device which may include a hologram, claim 7.
III. A superimposing display device which may include transparent display means which may include a negative pixel display, claims 1, 11, 12, 14, 15 and 17.
IV. A superimposing display device which may include transparent display means which include a positive pixel display, claims 1, 11, 12, 14, 16 and 17.
V. A superimposing display device which may include audio, claims 1, 6, 8, 9, and 13.
VI. A method of recording a plurality of images, claims 18 and 19.

1. [] As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest □ The additional search fees were accompanied by the applicant's protest.
□ No protest accompanied the payment of additional search fees.